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Abstract-The paper presents numerical calculations of the growth and non-linear interaction of two 
dimensional and transverse disturbances in a natural convection boundary layer flow adjacent to a vertical 
flat plate. We find that finite amplitude effects result in a double longitudinal mean secondary vortex 
system. At certain spanwise positions and, for particular phases of the primary wave, this highly organized 
longitudinal circulation causes an alternate spanwise thinning and thickening of the boundary region and 
resultant steepening and flattening of the base flow velocity profile. Measurements of the response of the 
flow to controlled two-dimensional streamwise disturbances, modulated by a transverse standing wave 
also show similar characteristics and that, in fact, the two disturbance features are and remain locked 
together at a small phase difference. Experimentally determined transition conditions thus correspond 

very closely to flows in-which this analysis finds large vortex motions. 

NOMENCLATURE 

perturbation amplitude; 

specific heat; 
similarity stream function for the base flow; 
gravitational acceleration; 

flux Grashof number = 5 y(gqx4/k25); 

similarity temperature function for the base 
flow; 
unit vector in the vertical (x) direction; 
unit coordinate in the complex plane; 
thermal conductivity; 
fluid pressure; 

Prandtl number = v/a; 
(u, u, w)-velocity vector; 
wall heat flux; 

fluid temperature; 
ambient temperature; 
characteristic temperature; 
characteristic velocity; 
velocity in the x-direction; 
velocity in the y-direction; 

velocity in the z-direction; 
coordinate in the principal flow direction; 
coordinate perpendicular to the surface; 
coordinate in the transverse direction. 

Greek symbols 

a, complex disturbance wave number = GI, + icci; 

a, thermal diffusivity; 

8, complex disturbance frequency = fi, + i/& ; 
6, characteristic boundary layer 

thickness = 5x/G*; 

$(Y). 

similarity variable = (y/6); 
velocity disturbance function; 

1, strength of transverse disturbance; 

$ :, Y> 4, 

strength of two dimensional disturbance; 
velocity stream function; 

~__ 
tRiver and Harbour Laboratory, Trondheim, Norway. 
Sparker Engineering, State University of New York, 
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P9 fluid density; 

V, kinematic viscosity; 

7, time; 

8, transverse wave number. 

INTRODUCTION 

LINEAR stability theory has greatly increased our 
understanding of the initial growth of disturbances in 
laminar flows. Many of the predictions for external 
flows are strongly supported by experimental evidence. 
Among the earliest such results were those of Schubauer 
and Skramstad [l] for forced flow. For natural 

convection flow along a vertical flat surface, stability 
theory has been corroborated by the experiments of 
colak-Antii: [20], Polymeropolos and Gebhart [3], 

Knowles and Gebhart [4], and Dring and Gebhart [Z]. 
The predictions of very sharp frequency filtering have 
been extensively supported by experimental evidence, 
Godaux and Gebhart [5] and Jaluria and Gebhart [6]. 
For line scource plumes and for natural convection flow 
over horizontal or slightly inclined flat surfaces, Pera 

and Gebhart [7,8] have reported qualitative agreement 
between experiment and stability calculations. One 
may conclude therefore, that the general idea of 
analyzing stability by superimposing a small oscillating 
disturbance on a flow, and following its growth down- 
stream, is a reasonable initial approach for buoyancy 

induced flows. 
However, as the amplitude of a disturbance is con- 

sidered finite, nonlinear mechanisms arise. These are of 
two kinds. One is the effect of Reynolds stresses in 
producing a redistribution of momentum in the 
boundary layer through changes in the mean flow. This 
may change the rate of energy transport to dis- 
turbances. The other is the possibility of generating 
higher harmonics. Possible effects of higher harmonics 
on theenergy transfer to disturbances are more difficult 
to conjecture. 

For the flow considered here, there is now a fair 
amount of detailed knowledge concerning the growth 
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of small disturbances. Recent summaries of the present 
knowledge are given by Gebhart [9. lo]. Although the 
flow amplifies a broad spectrum of frequencies down- 
stream, both calculations and experiment indicate that 
a very narrow band is much more rapidly amplified. 

As a result, almost all disturbance energy is con- 
centrated into a single frequency downstream, i.e. at 
increasing local Grashof numbers. These disturbances 

are known to lead directly to the short random bursts 
of large amplitude which convert the flow to turbulence, 

see Mollendorf and Gebhart [ll], Godaux and 
Gebhart [5], Jaluria and Gebhart [6]. 

New measurements have shown, as we would expect, 
that the breakdown to turbulence is not sudden but is 

rather a process wherein three-dimensional temporal 
bursts become more frequent and larger downstream. 
The observations of Lock and Trotter [ 121 suggest this. 

and the very detailed measurements during transition 
itself by Godaux & Gebhart [5] and Jaluria and 
Gebhart [6] put the matter in quantitative perspective. 

Considering the relative importance of two dimen- 

sional and transverse disturbances, much evidence 
indicates that the former are first unstable downstream, 
i.e. at a smaller local Grashof number. Direct 
observations have corroborated this. However, even 
these results suggest that oblique waves will also be 
amplified and that some appreciable band of frequency 
is highly amplified, Hieber and Gebhart [ 131. 

The observed three dimensional nature of bursts, 
and also of turbulent flow, suggest that three dimen- 
sional effects precede transition. 

In the earliest study, in air, Eckert and Soehngen [ 141 
detected isolated turbulent spots being convected 
downstream. However, interferometer visualization 
precluded any detailed assessment of three dimensional 
effects. Eckert er ul. [15], using smoke filaments, 
observed both longitudinal and transverse vortices. The 
initial part of the disturbance was mainly two 
dimensional. Three dimensional effects became increas- 
ingly evident as transition was approached. Fujii [16] 
and Fujii et ~1. [17] used the flow visualization 
techniques of dye injection, shadograph and Schlieren. 
The observations were in water and in oils, along a 
vertical cylinder. It was concluded that transition 
takes place via the formation of a double row transverse 
vortex system, i.e. with axis perpendicular to the flow 
direction and parallel to the surface. Since the diameter 
of the cylinder was of the order of the wavelength of 
the disturbance, the observations and conclusions may 
be limited to that geometry. Szewczyk [18] studied 
instability and transition in convection along a flat 
vertical plate in water using a dye for visualization. 
Transverse vorticity components were again reported. 
The transition to turbulence iyas explained in terms of 
vortex loop formation, similar to the mechanism 
suggested by Hama [19] for forced flow. Colak-Antic 
[20] used a hot wire to measure the convection of 
controlled disturbances in air. Although a transverse 
velocity component was detected, no definite con- 
clusions were drawn concerning the mechanism of 
transition. We shall have occasion to refer to some 

other more recent experiments at later stage. 

However, it is important to note here that for all of the 
previous data for which we could determine dis- 
turbance frequencies, the dominant frequency agreed 

very closely with that which has been calculated from 
linear stability theory to be most highly amplified. 

Thus, the sequence to transition appears now to be 
the concentration of almost all disturbance energy into 

essentially a single frequency two-dimensional dis- 
turbance. This is followed by non-linear growth, in 

conjunction with transverse disturbances, to generate 
secondary mean motions. The analysis given here 

attempts to assess first, how the nature of resulting 
secondary mean flows depend on the local base flow 
condition, and second, how these secondary flows 
might differently affect the mean flow. 

ANALYSIS 

The analysis postulates a two-dimensional dis- 
turbance, modulated by a standing transverse dis- 

turbance. Crucial questions in the model are the relative 
amplitudes and wavelengths of these two disturbance 
components and more important, their relative phase 
and velocities of propagation downstream. 

Our calculations vary the relative amplitude of the 
two disturbance components. The measurements of 

Jaluria and Gebhart [6] just ahead of transition 

resulting from naturally occurring disturbances, 
indicate that the two wavelengths were comparable in 
that circumstance. We suppose that their relation 
depends upon a number of subtle aspects of the 

particular environment in which the flow is led toward 
transition. We assume them to be equal. 

Concerning propagation velocities, Benny and Lin 
[21] and Benny [22, 231 assumed them equal for a 
zero pressure gradient forced flow boundary layer. 
Stuart [24] has shown that they are not, near the 
neutral curve, and therefore, presumably not in the 
amplified region beyond. Similar objections to the 

assumption of synchronization of two and three 
dimensional waves are also given by Hocking et u/[25]. 

However, there is abundant reason from recent 
experiment to believe that the velocities of the two 
disturbance components are nearly the same over a 
long distance in this highly filtered flow. Jaluria and 
Gebhart [26] found them to be so in their detailed 
measurements of controlled disturbance propagation. 
This kind of evidence is best seen in Fig. 1, where we 
have plotted, side-by-side, the periodic streamwise 
disturbance component and the spanwise component, 
each measured at various local values of G* in the 
range from 350 to 545. The two disturbance com- 
ponents are clearly locked together at a small phase 
difference, which varies from 0.2 to 0.3 of a cycle, with 
an average value of 0.25 for these data. 

The above phase difference may not, in fact, be 
natural in the sense of the response of a flow to 
naturally occurring three dimensional disturbances. 
This disturbance was introduced by a spanwise ribbon 
parallel to the plate, vibrated normal thereto. The 
ribbon had equally spaced spanwise sections of 0.125 
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The equations and formulation 
Finite amplitude effects are evaluated by setting up 

a systematic perturbation of linear stability theory. This 

theory, applied to buoyancy induced flow may be 
found in adequate detail, e.g. in Hieber and 

Gebhart [13]. 

G*= 400 

The non-linear interaction of the solutions to the 

homogeneous Orr-Sommerfeld equations become the 
driving functions for the first perturbation from 
linearized analysis. This induced secondary flow may 
be divided into a secondary mean flow and a second 
harmonic oscillation. We will consider only the former 

here. 
The equations of transport are written as: 

G*.500 

G*=545 

FIG. 1. Two dimensional and transverse 
velocity disturbances vs time as measured 
at various downstream locations G*, as 
indicated. Upper signal for each G* is the 

transverse one. 

and 0.0375 in height (i.e. parallel to the flow direction), 
each of 0.5 in spanwise length. Ribbon amplitude was 
0.003in. Jaluria and Gebhart did not measure the 
resulting phase relation of the streamwise and 
transversedisturbances immediately downstream of the 
ribbon. They were too small, given the noise level. 
However, consideration of fluid response to such an 
input suggests that transverse maxima would follow 
the two dimensional ones. It is fluid motion transversely 
away from ribbon regions of greater height which 
causes the transverse modulation. Propagation and 

dimensional argument both suggest the order of a 
quarter period lag. More details of this kind of 
experiment, which also produced the results in Figs. 
1416, are given in the above reference. 

We, therefore, make the empirical assumption that 
the velocities are the same, for the great attendant 
simplicity this affords. The physical picture of the 

disturbances, is two dimensional crests, being con- 
vected downstream, in phase with a spanwise modu- 

lation of their amplitude. 
In the analysis, nonlinear effects are retained in the 

disturbance equations. The basic flow is that induced 
adjacent to a vertical, uniform-heat-flux surface, in air. 
Solutions for the first perturbation from linear theory 
are obtained numerically for several different values of 
local Grashof number and disturbance frequency, for 
local conditions from near neutral to highly amplified. 
The emphasis is on nonlinear effects and their 
consequences. In the light of new data, briefly con- 
sidered here, these solutions lead to significant detailed 
insights concerning the phenomena which lead a 
laminar flow into transition. 

$+q.Vq = -kVp+vviq -(igp)i 

&?[;+q.Vt) = kVZt 
I 

v.q=o. 

The Boussinesq approximation Ap/p cc 1 will be 
invoked, and the quantities q, t and p are expanded as 
a perturbation series of the form 

q = q’“‘+aq”‘+azq’2’+ 

p = p(“‘+ap(1’+a2p(2’+ 

f = +“‘+~~(1’+a2~‘2’+ 

where 
qcn) = (,W, u(“‘, ,W’) . 

The superscript (0) refers to the undisturbed steady 
laminar flow. Note that p(O) becomes simply the hydro- 

static pressure in first order boundary layer theory. 
The superscript (1) refers to the primary oscillation, 
etc. and the symbol a is used to denote a perturbation 
amplitude. For given basic flow, q(O) = d"'(y,O,O) and 
t(O) = t”‘(y, O,O), under the parallel flow assumption. 
We will use as the basic flow that generated adjacent 
to a vertical flat surface which dissipates a constant and 
uniform surface heat flux. This solution was given by 
Sparrow and Gregg [27] and is the configuration we 
find most convenient for experiment. 

We will consider perturbations up to and including 

the terms of order a* and are particularly interested 
in the induced second order mean motion. 

In actual flows we expect that two-dimensional 
features of disturbances will first be prominent. 
Transverse effects will become important further down- 
stream. We assume here that this occurs while the 
disturbances are still in the linear domain. In forced 
flow there is strong experimental support for this 
conjecture in the measurements of Klebanoff et al. [28] 
which show a three-dimensional warping of the mean 
velocity profile well before transition. In natural con- 
vection thequalitative observations of Eckert et a/. [15], 

and of Colak-AntiC [20] suggest this. The measure- 
ments of Jaluria and Gebhart [26] with controlled 
three-dimensional disturbances indicate downstream 
amplification of transverse disturbance amplitude at 
G* values well below the non-linear range. 
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Therefore, we include both two-dimensional and 
transverse components in the linear perturbation. We 
also assume that the transverse disturbance is a 
standing sinusoidal wave in the spanwise direction. The 

postulated forms are: 

U(“(X, y, Z, 5) = Au\“(y) cos 0z ei(alx-l~lr) 

+pLUy)(y)e”ll”-8d 

+~~~‘)*(y)co~~~~-i(~t~-Btr, 

+l*U:l’*(Y)e-““:“-Brr), 
(2) 

Subscripts 1 and 2 identify the transverse and two- 

dimensional constituents, respectively. The asterisk 
indicates complex conjugate. Disturbance frequency 
and wavelength are /1,/27c and 27&, where the subscript 
r refers to the real parts. The constants 1 and h, which 
indicate the relative strength of the transverse and two- 

dimensional disturbances, are assumed real. Thus they 
are taken to be in phase. This is a reasonable 

approximation of observations discussed above. 
Following the notation of Sparrow and Gregg for 

the uniform flux surface condition, the characteristic 
velocity (U), temprature (T), length (S) and similarity 

variable q are: 

Dimensional and non-dimensional quantities are not 

distinguished here except when both appear in the same 
expression. Then the dimensional one will be identified 
with a tilde. 

The base flow and two-dimensional disturbance are 
written as : 

so that 

ti”‘(x, y, z) = vG*F(q) 

i@i)(x,y,z) = 42(y)ei(zzx-82rl 

u(o) - !?!c! - and @) - _!!!!!,? - 
aY 3X 

(4) 

and similarly 

and 

(1) _ W” -i(12x-p1T) v2 -----e 
3X 

For the transverse part of the general disturbance we 
introduce the following definition for the velocity com- 
ponent normal to the surface: 

VP’= -iqdl(y). (3 

The temperature distribution of the base flow is 
expressed as : 

t-?, 
v = H(q). 

T (6) 

The disturbance temperatures are defined as in (2). 
To conserve space the governing equations for the 

base flow and for the 2-D and 3-D primary disturbance 
amplitude functions will not be reproduced here. One 

may only mention that they are of the usual coupled 
Orr-Sommerfeld form. The reader may consult 
Audunson [29] for further details. 

Secondary Jaws 
The mean seeond order disturbance induced by 

primary disturbance interactions, at this order, is a 
downstream vorticity component. It amounts to a span- 
wise momentum exchange which will deform the base 
velocity profile. In forced flow Klebanoff et al. [28] 

found that this transport warped the velocity profile 
ahead of transition. The effect of higher harmonics was 

not found to be significant. 
Detailed measurements of finite disturbance effects 

on temperature and velocity profiles by Jaluria and 
Gebhart [6, 261 indicate that these flows highly favour 
a narrow band of frequency for amplification, even 
after the beginning of transition. Hieber and Gebhart 

[ 131 have collected all available data on the first local 
appearance of highly amplified oscillations, arising 
from ‘natural’ disturbances. In terms of the coordinates 
of the stability plane (i.e. fl, and G* in Fig. 2) all of these 

0 200 400 600 600 1000 

G* 

FIG. 2. Stability diagram from Hieber and Gebhart [13]- 
Contours of constant-$( xi dG for Pr = 0.733. t\“(O) = 0. 
Dashed curves are constant frequency paths. ‘V’ Points 
identifying the location of the present calculations. Data of 
highly amplified disturbances : ‘0’ Eckert and Soehngen [ 141: 

‘+’ Polymeropoulos [34]. 

data, in both air and water, lie in the portion of the 
unstable region which has the highest amplification 
rate. Colak-Antic [30] and Mollendorf and Gebhart 
[l 11, along with many other workers, have pointed 
out that such disturbances have a simple sinusoidal 
appearance even after being highly amplified. Thus we 
doubt that higher harmonics are of primary importance 
in the last stages preceding transition and will here 
consider only the mc (1 I secondary motion consequence 
of non-linear interaction. From (2) it is expressed as: 

~6~’ = [~.2n01 cos2&e-2(““X-~~~‘) 

+ /I~UOZ cos 8 e -(111+12,)X+cal,+Bz,)r 

+p2u03 ,-2(zzlx-Pzcr) +~2U04e-2’“““-“““] (7) 

with similar expressions for the other flow components. 
The amplitude functions depend only on 4’ and the 
subscript i refers to the imaginary part. The subscripts 
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01 and 02 identify respectively: (i) that part of the flow 
induced by the purely transverse component of the 
primary oscillation; (ii) the spanwise varying part of the 
flow induced by the transverse and two-dimensional 
components of the primary oscillation. Both the 01 -flow 
and 02-flow vary in the spanwise direction and cause a 
spanwise distortion of the base velocity profile. The 03 
and the 04 flows are merely two-dimensional distor- 
tions (no spanwise variation) generated by the two- 
dimensional and transverse primary oscillations, 
respectively. 

The governing equations for the secondary mean 
flow are given in normalized form. Those for the 
01-flow are: 

Momentum : 

(8) 

Energy : 

2ali(Cli_Fl)fol +VolH’ 

-+4(c(:i-Q2) ror = --K$J~] (9) 

I 

The y-vorticity component is 

2ari(Cri_F’)UOr -- 1 U01 

28 
= -2fIv0+~to, t2e&','-2Ulif7i)1] (10) 

where 

001 = -20UOr +2CZri Wol; and Cri = firi/‘ari. 

The velocity components are 

uli duo1 e I 
‘Or = 2(~&-0~) dq 2(OZji-02) 

001 (11) 

ali e duo1 
-. 

wol = 2(Ct:i-82)uo1+2(~fi-C?2) dn (12) 

The boundary conditions are 

vol(co)=o=vbl(c0)=ool(c0)=tOl(c0)=u01(0) 

= &l(O) = VOl(0) = r,,(O). (13) 

Finally, the different forcing functions associated with 
the 01-flow may be expressed as: 

v’G*~ &‘l = __ #i = vG*~ __ 
w (5x)3 

- 2c&%‘l”* 

d 
+ - [:(u\“v:“* + U\r)*z#))] 

d? 

and similar expressions for $$,c?b’~.~fj. The equivalent 
equations for the OZflow are 

Momentum equation : 

(ali+aZi)(C2i-F) $+[(tili+Cr,i)2-Bi] 

-h -$+[(ali+ari)2-Q2] 
( I 

2 

V02 

+ [e2-(~li+c(2i)2]y!2 

+~[e~ol-(l,i+ol~i)ibi!]. (15) 

Energy equation : 

(~li+CfZi)(C2i_Fl)t02+VOZH’ 

1 

[ 

d2 -__ -_i-k(Xri+U2i)2-e2 
PrG* dg 1 

to2 = -Kg:. (16) 

The y-vorticity component is 

(Eli+a2i)(C2i_UV02 

-+((ccri+c(2J2-@’ 1 Do2 = -fhozF” 

(17) 

where ~02 = -&102+(t(ri+tl&~gr; and 

C = Bli+82i 
2, p. 

ali+aZi 

The velocity components are 

aii+a2i duo2 e I 
‘02 =(u~~+cc~J~-B~ dq (ari+~2i)Z-02”02(18) 

The boundary conditions are 

vo2(co) = 0 = vbz(co) = uo2(co) = voz(0) = l&z(O) 

= Voz(0) = t02(0). (19) 

The appropriate forcing functions for the above are 

v’G*~ VIGIL m = (sx)3 43 = (sx)3 

X I -(Uli+U2i)2(U':'U~"* +U$"*W~") 

+ e(w\%p + wpkp) 
1 

and similar expressions for $4, db’: and K&. 

Equations (8-20) are the complete set for the 
spanwise-varying second order mean motion. Note that 
2 and fi have been assumed complex, allowing for both 
temporal and spatial growth factors. The use of 
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complex CI and /1 may be seen to permit solutions to 
the transverse primary oscillation with longitudinal 
phase velocity and frequency identical to those of the 
two-dimensional primary wave, at identical values of 

G*. The imaginary parts of both a and p may be 
regarded as individual terms of a total amplification 
factor. By Caster’s [31, 321 transformation these may 
be converted into either pure spatial or pure temporal 

form. 
The principal characteristics we have calculated for 

the mean secondary flow may be shown in the form of 
streamlines. However, in our formulation, the three- 
dimensional and transient nature of the mean 

secondary flow does not lead directly to presen.@tion of 
meaningful streamlines. This difficulty is avoided by 
twodifferent approximations. First, for solutions which 
apply close to the neutral curve in the stability plane 
of Fig. 2 we assume that the mean secondary flow varies 
slowly in both .x and r, i.e. e-“‘” and e-O>’ 1 1. If one 

substitutes for x the wave length and for 7 the period, 
the above approximations require that gi/C(, << 1 and 

IV/L << 1. 
Second, for solutions which apply in the highly 

amplified region of the stability plane of Fig. 2 we will 
set ai = 0 for the primary oscillation itself, and consider 
both the transverse and two-dimensional disturbances 
to be amplifying in time only. This procedure will, of 
course, for the solutions in this domaine result in 
different phase velocities for the two-dimensional and 
transverse primary waves. We assume that the error 
due to this difference in wave velocities is small. The 
error may in any event be kept within reasonable 
limits by restricting the maximum value of 0, the 
transverse wave number. In this way the difference in 
phase velocities may be kept less than perhaps ten 
percent [29]. The physical consequences of two 
different phase velocities are that the 02-flow would 
have a long standing wave (in x) of wave length 

2nj(cc,i -E,~) and the 02-flow would reverse itself in 
five or six wave lengths. Experiments have not detected 

this effect (see Fig. 1). 
The two remaining flow components, i.e. the 03 and 

04-flow, are constant across the span. Neither of these 
flows contributes to any longitudinal roll system and 
since this is the main concern of the present 
investigation, they are not considered in any furthet- 
detail [29]. 

Secondary mean ,flow streamlines 
The solution to the mean secondary flow will be 

presented in the form of projected streamlines, formed 
by the transverse and the normal velocity components. 
For the temporarily amplifying flows these streamlines 
will apply formally only to a particular instant of time. 
The differential equation for the streamlines is 

Along a streamline we have 

/il.’ 
!Y tlol sin 20~ + --uo2 sin 8; = constant. 
20 

(21) 

NUMERICAL METHODS 

Primary disturbance 
The eigenvalue problem posed by the transverse and 

two-dimensional disturbance components is a sixth 

order system of linear homogeneous equations with 
variable coefficients. Nachtsheim [33] has shown that 
they possess three linearly independent solutions in the 
far field. Hieber and Gebhart [13] presented an 

integration technique for solving them which is 
significantly simpler than methods previously em- 
ployed. Starting the solution from the far field and 
integrating the three linearly independent eigen- 
functions separately, they only needed to employ two 
initial guesses. We used this scheme. 

One may state the eigenvalue problem as 

.f’(cc, p, 0, Pr, C*) = 0 at 9 = 0. (22) 

The parameters are 0, Pr and G* and a change of any 
one of these requires a new set of eigenvalues. A 
correct set is determined from one of the three complex 
boundary conditions. One may arbitrarily choose two 
of the four components of LY and ,8 and compute the 
remaining two. 

Typically either rr or pi is set to zero. bI is chosen 
as some positive value. Then a,. fli or (Ye, fii are found 
from the boundary conditions. As mentioned above 
solutions close to the neutral curve for the transverse 
disturbance (0 # 0) are obtained with both gi and pi 
different from zero. 1,. flI are then fixed at the values 
found for a two-dimensional oscillation at the same G*. 

In the highly amplified domain solutions for the trans- 
verse disturbance are obtained with ai = 0. 

The mean secondary flow 
The equations governing the mean secondary tlow 

are two-point boundary value problems. One may 
integrate them either starting out from the surface 
or in toward it, from the far field. However, the in- 
homogeneous terms are very complicated, and numeri- 
cal integration from the wall was chosen as the most 
practical approach. A fourth order Runge-Kutta 
method was used to generate the solutions. At each 
step in the integration the values of the appropriate 
forcing functions were evaluated from stored. numerical 
solutions of the primary oscillation. 

We will discuss the general procedure in terms of 
rnl. The solution requires that some value be guessed 
at the wall. We guessed ngl (0) and t$‘, (0). They were 
corrected by iteration until the outward marching 
solution satisfied the far field boundary conditions to 
within a prescribed error, say 10m3 + 10-4, at some 
large value of 7. This was repeated several times, each 
time moving the terminal point further out along the 
q-axis. Convergence was assumed when the values of 
rgl (0) and L$‘, (0) did not change by more than O.Ol:‘,, 
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as the terminal point was moved from one location to 
the next. 

Streamline calculation 
The final step in these calculations is the generation 

of secondary mean flow streamlines. Different stream- 
lines were found from (21) by changing the value of 
the stream function. Regarding 0.r as the independent 
variable in (21), solutions to the equation were obtained 
by scanning for zeros at fixed values of q (i.e. uOr and 
uoZ) and stream function. 

The ratio p/1 indicates the relative magnitude 
(strength) of two dimensional and transverse dis- 
turbances, since the amplitude functions are normalized 
to a nominal order of 1.0. Presumably, the natural 
disturbances to which a flow might be subject would 
vary greatly in the relative prominence of these two 
effects. We examined this question by considering the 
range of AL/I from values much greater than 1.0 to zero, 
i.e. down to no two-dimensional primary disturbance. 

All the above calculations were performed in double 
precision on an I.B.M. 360/65. Two different mesh 
sizes were used in integrating the disturbance functions, 
0.01 for u < 6, and 0.02 for ‘1 > 6. For the streamline 
calculation the step size in Bz was 0.01. 

SOME SOLUTIONS 

Calculations were made at four flow conditions 
having very different linear stability characteristics, for 
a Prandtl number of 0.733. The flow conditions chosen 
are shown on the two-dimensional disturbance stability 
plane in Fig. 2. Also shown are observed points of 
highly amplified disturbances which arise naturally in 
experimental systems. The points of Polymeropoulos 
[34] are clustered around G* = 700 and /?r = 0.055. 
This was the motivation for making two calculations 
at G* = 700, one, point A, in the most highly amplified 
domain (fir = 0.055) and the other, point B, close to 
the neutral curve (b, = 0.121). Another condition of 
high amplification, corresponding to G* = 500 is 
chosen, at C, whereas D is at about the same physical 
frequency, but at the neutral condition. This selection 
of conditions tests the principal characteristics of two- 
dimensional disturbance propagation. 

Selected results from the calculations are shown in 
Figs. 3-12. On the figures showing amplitude functions, 
vertical lines along the horizontal axis indicate the 
points of maximum velocity of the base flow and the 
position of the outer critical layer, i.e. the point 
where the wave speed of the two-dimensional primary 
disturbance is equal to the base flow velocity. 

G* equal to 700 
Of principal interest is the modification of the base 

velocity profile by the secondary mean flow, which 
results from the action of Reynolds stresses. This could 
strengthen (or weaken) the convection of base flow 

energy into disturbance energy and affect disturbance 
growth (Lin [35]). 

to) PRIMARY OSCILLATION 2-o FLOW 

G*. 700 

4r 
pr z 0,055 

(b) PRIMARY OSCILLATION 

TRANSVERSE VELOCITY COMP 

G*. 700 

-,o 1 

FIG. 3. For point A, the magnitude functions for 
the primary oscillation 0 = 0.546. -(a): a, = 0.308, 
Bi = 0.00936: - (b): a. = 0.348. B; = 0.00346. 6 = 
b:564; -.-I Location of u!$“~;‘~----: Location 

of criterical point. 

Results for the highly amplified condition, point A, 
are considered first. The amplitude functions of the 
primary oscillations are shown in Fig. 3. Figure 4 
indicates the magnitude of the functions urn. wol, uoz, 

6 G* ~700 

p r : 0,055 
s 

(d) 
G’.700 

FIG. 4. For point A, the magnitude functions for the mean 
secondary flow. (a, b) Ol-flow. (c, d) 02-flow. See caption to 

Fig. 3 for other flow parameters. 
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Fto. 5. For point A, the projected streamlines 
of the mean secondary flow. Stream function 
value: 0, 0.00005; 1, 0.0001; 2, 0.0002; 3, 
0.0005; 4, 0.001; 5, 0.005; 6, 0.01; 7, 0.05; 
8, 0.1. See caption to Fig. 3 for other flow 

parameters. 

and ~02. These results are collected in an inter- 
pretation in streamlines in Fig. 5(ad). These projected 
streamlines were generated with equation (21). 

When ~11 >> 1 we expect that the mean secondary 
flow is essentially the 02-flow. This flow induces the 
mean cellular vortex structure motion seen in Fig. 5(a) 
with spanwise periodicity of 2~10. 

For increasing three-dimensionality of the dis- 

turbance, i.e. decreasing p/I>, the 01-flow contribution 
to the mean secondary flow becomes more prominent. 
The vortex structure for the extreme case of a purely 
transverse primary oscillation (p/L = 0) is seen in Fig. 

5(d). The spanwise period is n/O. 
For other values of n/i. the pattern goes through 

various stages of development. Two of these are seen 
in Figs. 5(b) and (c). As p/i decreases from much greater 
than 1. the centers of the outer roll move toward 
spanwise locations Oz = 2177~ whereas the centers of the 
inner roll are pushed towards spanwise locations 

Qz = (2n+ 1)~. These centers also move somewhat 
closer to the outer critical layer. 

Such secondary motions imply a large momentum 
transport across the boundary region. Recall that the 

base velocity profile for this flow has a maximum 
located fairly close to the surface, i.e. at q = 0.8, and 

an inflection point in the outer part of the boundary 
layer, at ye 1 2. 

Consider the highly amplified circumstance which 

resulted in Fig. 5(a). Since we expect the flow prior to 
transition to be mainly two-dimensional, this 02-flow 
is of primary interest. The striking feature of this 

secondary mean flow is the presence of both an inner 
and outer longitudinal vortex roll. This is in contrast 
to the forced Row circumstance, where only a single 
eddy was found [23]. At (11 = (2n + 1)n the inner roll 

carries high (and some low) momentum fluid from the 
inner part of the boundary layer to the outer slower- 
moving region. The counter-rotating outer vortex 
brings low momentum fluid from the far field into the 
boundary region at this same z-location. Note that at 
locations f3z = (2n+ 1)~ the spanwise value of u(r) is at 

a minimum, see (2). 

The sketches in Figs. 6 and 7 describe the 
consequences of these cross-flows The orientation and 
qualitative location of the two rolls, with respect to the 
base flow U(O), are seen in Fig. 6. The resulting 
modifications of the mean velocity profile are sketched 
in Fig. 7, for the two extreme locations in z. The 

secondary longitudinal velocity components uo2 in 
Fig. 4(d) was used to infer these effects. Consider the 
modifications of the mean velocity profile at 

Oz = (2n + 1)n and, recalling that the energy transfer to 
a disturbance is proportional to the velocity gradient 
of the mean flow [35], we see that disturbance growth 
may indeed be strongly augmented. The potential for 
the formation of a “shear-layer” is also present in this 
natural convection circumstance. At locations Oz = 2nn 
the vortex rolls have the opposite effect. The velocity 
maximum of the mean flow moves closer to the surface 
and the velocity gradient in the outer part of the 
boundary layer is reduced. This suggests a reduction in 
the disturbance growth rate. 

Thus the mean secondary flow produces an alternate 
spanwise steepening and flattening of the outer part of 
the mean velocity profile. Another consequence is an 
alternating thinning and thickening of the boundary 
layer in the spanwise direction. 

The above interpretation is somewhat modified if one 
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FIG. 6. For point A, the projected streamlines 
associated with the spanwise alternating mean 

secondary flow. 

FIG. 7. For point A, the inferred qualitative 
distortions of the base Bow profile for highly 
amplifying disturbances. ---: Spanwise 
location 62 = (2n + 1)~; - .- : Spanwise loca- 

tion 0z = 2nrr; y: Base flow profile. 

also considers the longitudinal vorticity component of 
the primary oscillation, This oscillation is periodic in 
x and has the same spanwise period as the OMlow. 
Recall that 

w$‘) = (w~~~~cos(a,x-/IVr)-w\\‘sin(a,x-~,t))sin&r. 

From Fig. 3(b) the effect of the oscillatory longitudinal 
vorticity component of the primary wave is seen to 
intensify the secondary circulation where (tl, x - /I, r) = 
(2n+ 1)x. For an observer moving with the wave, this 
corresponds to the concave part of the streamline. 

Since we are dealing with buoyancy driven flows it is 
of interest to assess the effect these longitudinal vortex 
rolls have on the mean tem~rature dist~bution. The 
modifications of the mean temperature distribution 
across the boundary layer are seen in Fig. 8. The 
secondary temperature distribution to2 in Fig. 4(d) was 
used to determine these distortions. The longitudinal 
vortex rolls apparently may produce an alternating 
spanwise reduction and au~entation of the local heat 
transfer. If so, moderation of the heat transfer (in terms 
of the local Nusselt number) should take place at 
spanwise locations 0.z = (2~ + 1)x, where we recall that 
conditions are favorable for most rapid growth of the 
velocity disturbance. At this spanwise location the 
primary temperature disturbance t(‘) is at a minimum. 
For a surface of limited internal conduction this span- 
wise variation would produce an additional mode or 
mechanism which might be very important in deter- 
mining stability. 
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Fro. 8. For point A, the inferred qualitative dis- 
tortions of flow temperature profile. ---: 
Spanwise location 02 = (2n+ 1)n; -.-: Span- 
wise location 02 = 2nn; -: Base flow profile. 
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(b) PRIMARY OSCILLATION, 

TRANSVERSE VELOCITY 

6r 

FUNCTION 

FIG. 9. For point B, the magnitude functions for 
the primary oscillation; a, = 0.769. -(a):02-flow; 
ai = -0.000897; - (b): Ol-flow; ai = -0.0126, 
fli = -0.00469, 0 = 0.348; -‘--: Location of 

u!,$; .---: Location of the critical point. 

We now consider the results for point B on Fig. 2. 
Primary osciliation amplitude functions are shown in 
Fig. 9 and resulting longitudinal vortices are shown in 
Fig. 10, for three values of p/n. Here again p/12 z- 1 is 
primarily a two-dimensional disturbance and p/L 
decreasing simulates increasing threedimensionality. 
These results are very different from those at point A. 
Only a single longitudina1 roll results. 

In Fig. 10(c) is shown the longitudinal vortex 
produced by a purely transverse oscillation. At span- 
wise positions Bz = 2nn and 0z = (2n + 1)x this system 
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FIG. 10. For point B, the projected streamlines of the mean 
secondary flow. Stream function value: 0, 0.0001; 1, 0.0005; 
2, 0.001; 3, 0.005; 4, 0.01; 5, 0.05; 6, 0.1; 7, 0.5; 8, 1.0. See 

caption to Fig. 9 for other flow parameters. 

of vortices alternately reinforces and weakens the 

vortices induced by the 02-flow (Fig. lOa). A particular 
example of increased three-dimensionality is seen in 
Fig. 10(b) (p/I. = 0.2). The vortex rolls have been pushed 
towards spanwise positions Bz = 2n7r and additional 
vortices appear at spanwise location 02 = (2n + I)rr. 

The resulting modification of the mean flow, caused 

by the 0240~ of Fig. 10(a), is compatible with the 

former results. Spanwise locations 0z = (2n + 1)rc 
experience a momentum defect in the inner and outer 
part of the boundary layer. At 0z = 2nn the situation 

is reversed. Thus there is again an alternating spanwise 
thinning and thickening of the boundary layer. 
However, this single roll system does not appear to 

produce any spectacular or important steepening of the 
outer part of the velocity profile. The profile merely 
shifts in and out from the surface while retaining its 
original form. These changes would not be expected to 
augment disturbance growth. 

The computed results for point C were in complete 
agreement with those discussed above for point A [29]. 
This is not surprising since both points lie in the highly 
unstable region and close to the path of fastest amplifi- 
cation. The main reason for making this calculation was 
to determine the secondary mean flow pattern over a 
wide range of Grashof numbers at essentially a constant 
frequency. The calculated results would be much less 
persuasive if the spatial form of the vortex system 
altered appreciably downstream (in x or G*) for a given 
physical disturbance frequency. That would imply the 
omission of additional disturbance effects of an order 
comparable to those included. 

Point D lies near the neutral curve and along the same 
high amplification path, see Fig. 2. Although we did not 

(a) Z-D PRIMARY OSCILLATION 

G*z 160 
pr : 0.106 

(b) PRIMARY OSCILLATION. 

TRANSVERSE VELOCITY FUNCTION 

t/l 

Gf=l60 
4 

Pr = 0,106 

FIG. 11. For point D, the magnitude functions for the 
primary oscillation: 1, = 0.106; a, = 0.670. - (a): ai = 

-0.0028; - (b): xi = 0.0516, pi = 0.0049, B = 0.34; 
-,-: Location of u!&; ---: Location of the critical 

point. 

(b) G”z160 

VW (81) 

FIG. 12. Point D. Projected streamlines of the mean second- 
aryflow. Stream function value: I, 0.5 x lo-*; 2,0.5 x 10A3; 
3, 0.5 x lo-‘; 4, 0.5 x 10-r; 5, 0.2. See caption to Fig. 11 

for other flow parameters. 
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expect high amplification here, any mean secondary 

flow, in its earliest stages, would be interesting. 
Primary oscillation amplitude distributions are 

shown in Fig. 11. The projected streamlines of the mean 
secondary flow are seen in Fig. 12, again for three values 
of p/n. The results, for the 02-flow in Fig. 12(a), for 
p/L = 10, show one dominating outer roll. But we also 
see the beginning of a weak inner circulation. As before, 
the transverse wave number is 0 = 271/z. For the purely 
spanwise oscillating disturbance, i.e. for p/in = 0, the 

projected streamlines in Fig. 12(c) show both an inner 
and outer vortex, as for the highly amplified flows. 
Another stage of three-dimensionality, p/1 = 2, is seen 
in Fig. 12(b). The general behavior is the same as for 

the previous calculations. 
This is particularly interesting and adds some 

additional weight to the present formulation since the 
calculations at D were carried out with identical 
frequency and wavenumbers for the two-dimensional 
and three-dimensional primary disturbance (i.e. both 

tl and p complex). 

COMPARISON WITH AVAILABLE DATA 

There is considerable qualitative and quantitative 
evidence that secondary mean flow vortices im- 

mediately precede the disruption of highly disturbed 
laminar flow. Colak-AntiC [30] suspended highly 
reflective aluminum particles in water and observed 
their behaviour during transition in the convection 
layer formed adjacent to a heated vertical flat surface. 

Two longitudinal vortices were seen, one near the 
surface and the other farther out, in accord with our 
results. He also studied disturbance behaviour and 
transition phenomena adjacent to an isothermal 

vertical surface in air. Both smoke filaments and hot 
wire anemometry were employed. Hot wire measure- 

ments were made at G* z 575. 
The conclusions, based upon both the observations 

in water and air were: (i) Three-dimensional effects 
occur almost simultaneously with the first observations 
of sinusoidal disturbances. (ii) Secondary mean flow 

longitudinal vortices exist both in air and in water. 
They occurred spontaneously at various points across 
the span. (iii) “Horse-shoe” shaped vortex loops were 
found. It was concluded that this was not the primary 
reason for breakdown. (iv) Intense shear layers within 
the boundary region were inferred from visual 
observations, although no details were given except that 
the inferred shear layers in general were said to be 
associated with the longitudinal eddies. 

Warner and Arpaci [36] studied natural convection 
flow along a vertical flat plate in air. For conditions 
of incipient transition (G* c 600) they found the local 
heat transfer rate and Nusselt number to decrease. On 
the average, incipient transition may be associated with 
the fastest amplifying disturbance. Our results suggest 
a decrease in the local Nusselt number at spanwise 
positions of maximum disturbance growth. 

They also made detailed measurements of tempera- 
ture distributions across the boundary layer, as 
tabulated by Warner [37]. In Fig. 13 we show these 
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FIG. 13. Experimental observation of the distortion of 
the base flow temperature profile in an early stage of 
transition. Data: --- Temperature profile for Gr, = 
0.9 x 109, Warner [37]; ~ Calculated undisturbed 
laminar temperature profile (Sparrow and Gregg [27]). 

data for the lowest transition Grashof number 
observed, Gr, = gAt,x3/v2 = 0.9 x 10’ (G* = 600), 
where At, is the temperature difference across the 

boundary layer. Also shown is the distribution for the 
undisturbed laminar flow. Both curves are plotted 
against the similarity variable q = (y/x). l(Gr,/4). 
Warner’s curve shows a general distortion in accord 
with the conjecture from our results at the spanwise 

location of fastest disturbance growth. Although the 
above comparisons are rough and qualitative and 
certainly not decisive, the trends are the same. 

Our results indicate that spanwise steepening of the 

mean velocity profile occurs in the outer part of the 

boundary layer (Fig. 7). The maximum disturbance 
energy, or amplitude, should consequently also be 
found there. The results of Holman et al. [38] and of 
Polymeropolous and Gebhart [3] are particularly 

revealing in this aspect of disturbaice growth. Holman 
found the maximum energy of the disturbance to be 
approximately half way through the boundary layer, 
i.e. at ‘1 = 2. Polymeropolous and Gebhart found the 
maximum amplitude of the disturbance to be at about 
the same location. 

However, the most conclusive evidence of the 
relevance and role of a double longitudinal secondary 
mean flow vortex system as the consequence of non- 
linear interactions at larger downstream disturbance 
amplitudes, as well as the harbinger of eventual 
turbulence, are the experimental studies in water of 
Jaluria and Gebhart [6, 261. This is seen first; in their 
observations of downstream amplification and non- 
linear interaction of introduced and controlled three- 
dimensional disturbances and, second; in their observa- 
tions of disturbance forms which immediately precede 
the appearance of turbulent bursts in a flow subject to 
only naturally occurring disturbances. 

The spatial, frequency and amplitude control in the 
first experiments permitted both the localization of the 
first appearance of non-linear growth in the periodic 
disturbance components and the detailed mapping of 
resulting secondary mean flows. We reproduce here 
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FIG. 14. Measured variation of downstream disturbance 
amplitude as a function of vibrator frequency. Data: 0, at 
the spanwise location of primary disturbance maximum; 
0, at the spanwise location of primary disturbance minimum. 

some data taken at G* = 530, in an order which 

corroborates, with Fig. 1, the mechanisms assumed for 
and resulting from this analysis. 

First, in Fig. 14, we see the measured amplitude of 
the longitudinal periodic disturbance component uy), 
normalized by its maximum value, plotted as a function 
of input disturbance frequency p, the vibrator 

amplitude being constant. The maximum value occurs 
at /3 = 0.025, independent of spanwise location and, 
therefore, of the amplitude of the transverse dis- 
turbance. The frequency predicted by linear theory for 
two-dimensional disturbances, Hieber and Gebhart 
[13], at G* = 530 is about 0.027. This condition, 
G* = 530, is measured to be in the non-linear range. 
Thus, neither transverse disturbances nor non-linear 
amplification at first cause any appreciable change in 
the sharp frequency filtering characteristics of these 
flows. 

Figure 15 shows the variation of measured transverse 
(in z) secondary mean flow component, w, normalized 
by the measured base flow maximum velocity &‘&, 
across the boundary region, i.e. in ‘I. Since w must be 

zero at q = 0, a double longitudinal mean flow vortex 
system has clearly been generated, through interaction 
with the transverse disturbance which, by Fig. 1, has 
the same propagation velocity as does the two 
dimensional disturbance. We note further the similarity 

of this distribution with the functions woI and wo2 
calculated here as components of w and plotted in 
Fig. 4 for point A. 

Figure 16 shows mean longitudinal velocities u, 
measured at a spanwise maximum and minimum of 

UV’, compared with u measured in the absence of 
introduced disturbances. These consequences follow 
directly from both calculated and measured w and also 
agree with the inferences of the present calculations 
drawn in Figs. 6 and 7. 

We also note here that these experimental results are 
in close agreement with the measurements of w by 
Jaluria and Gebhart [6] of flows, preceding transition, 
into which no artificial disturbances had been 
introduced. However, no such complete results as those 
of Figs. 15 and 16 were obtained due to the randomness 

FIG. 15. Measured variation of the transverse com- 
ponent of the secondary mean flow at G* = 530. 
Data: 0, at a spanwise location midway between 
locations of primary disturbance maximum and mini- 
mum amplitudes; 0, at 20% of the transverse wave- 
length from the above location toward the location 

of primary disturbance amplitude maximum. 

T 

FIG. 16. Measured longitudinal mean flow profiles, 
compared with that for undisturbed flow. Data: 0, 
at spanwise location of primary disturbance mini- 
mum; 0, at spanwise location ofprimary disturbance 

maximum; n , undisturbed flow. 

of the disturbances and the high relative noise level of 
the instrumentation in this circumstance. 

We may safely say, therefore, that measurements 
indicate a mechanism reasonably modelled by the 
present analysis. An intense shear layer is perhaps 
instrumental in the breakdown and transition processes 
in forced flow. The results of Colak-AntiC [30] and 
those of Jaluria and Gebhart [6, 261 suggest a similar 
mechanism for natural convection. Secondary circula- 
tions produce spanwise regions of high shear. 

ADDITIONAL OBSERVATIONS 

A mean secondary longitudinal double vortex system 
is generated by non-linear interaction of two- 
dimensional and transverse disturbances. At certain 
spanwise positions at particular phases of the primary 
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wave, this circulation redistributes longitudinal 

momentum in planes perpendicular to the undisturbed 

mean flow. The spanwise varying distortion of the mean 
velocity profile increases downstream. Local steepening 
occurs at spanwise locations where the primary 
disturbance is at a spanwise minimum. 

These calculated locations of highest shear are just 
the opposite of those found in analogous forced flow. 
The quiescent far field, rather than the region near the 
surface, is the source of the low momentum which 
causes the high shear region. We recall that the Gtirtler- 

Witting [39] theory, originally developed for forced 
flow, postulates that maximum intensification of 

secondary longitudinal vortices occurs where the 
streamline is concave. Thus, if the Gb;rtler-Witting 
phenomenon has any significance in natural con- 

vection, it may further strengthen the effects calculated 

here. 
One of the most significant features of our results is 

the critical dependence of the form of the non-linearly 

generated secondary mean flow on the base flow and 
frequency conditions, G* and fi, for which they were 
calculated. The points chosen for calculation sample 
the typical stability conditions predicted by linear 
analysis for a purely two-dimensional disturbance, i.e. 

neutral flows at both low and high G*, D and B, highly 

amplifying flows at moderate and high G*, C and A. 
For B, only a single vortex arises and it does not 

produce a strong shear layer formation. At D, however, 
a second but much smaller eddy is found near the wall. 
Since D is located on the most highly filtered frequency 
path to C and A, where a strong double vortex system 
was found, it might appear that the double vortex 
system develops as the amplifying disturbance is con- 
vected downstream. This indicates that the secondary 
mean flow configuration need not appreciably change 
as the disturbance system is convected downstream, but 

that it enhances itself. We think that it is likely to be 
very important that this occurs simultaneously with the 
continued concentration of disturbance energy into the 
filtered two-dimensional primary wave. That is, the 

linear and non-linear mechanisms appear to proceed 
hand-in-hand and highly filtered. It would be very 
interesting to calculate the integrated effect of an 
initially three-dimensional disturbance along the 
filtered path and compare the results with the new data 
on disturbance form and transition. 
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MOUVEMENTS SECONDAIRES APPARAISSANT 
DANS UN ECOULEMENT EN CONVECTION LIBRE 

R&urn& L’article prCsente une approche numCrique du diveloppement et de l’inttraction non linCaire 
entre perturbations bidimensionnelles et transversales dans une couche limite en convection naturelle 
adjacente B une paroi plane vcrticale. II apparait que l’effet d’une amplitude finie se traduit par 
l’&ablissement d’un double systeme tourbillonnaire secondaire longitudinal. Pour certaines positions 
transversales, et pour des phases particulitres de I’onde primaire, cette circulation longitudinale hautement 
organist-e produit des kpaississements et des amincissements alter&s de la couche limite, se traduisant 
par des augmentations et des diminutions de la pente du profil de vitesse dans l’icoulement de 
r&f&rence. Des mesures de rtponse de l’tcoulement B des perturbations bidimensionnelles, control&es dans 
le sens de I’&coulement et modultes par une onde stationnaire transversale, prtsentent kgalement des 
caractiristiques semblables et les caractkres de deux perturbations demeurent en fait Ii&s, prksentant une 
faible difftrence de phase. Ainsi les conditions de la transition dktermintes exptrimentalement correspon- 
dent de trb prts g des tcoulements dans lesquels la presente analyse dCcouvre de larges mouvements 

tourbillonnaires. 

MITTLERE SEKUNDARBEWEGUNGEN IN EINER 
AUFTRIEBSINDUZIERTEN STROMUNG 

Zusammenfassung-Es wird eine numerische Berechnung angegeben iiber das Wachstum und die nicht- 
lineare Einwirkung von zweidimensionalen und querwirkenden StBrungen auf die Grenzschicht an einer 
senkrechten, ebenen Wand bei natiirlicher Konvektion. Es ergab sich, dalj die endlichen Amplitudeneffekte 
ein mittleres sekundlres Doppell%ngswirbelsystem liefern. In gewissen Spannweiten und fiir besondere 
Phasen der Primgrwelle verursacht diese gut ausgerichtete Lsngszirkulation, abhIngig von der Spannweite, 
abwechselnd eine Verdiinnung oder Verdickung des Grenzschichtbereichs und daraus resultierend eine 
ErhGhung oder eine Abflachung der Profile der Grundstrdmungsgeschwindigkeit. 

Messungen der Reaktion der Striimung auf kontrollierte zweidimensionale Starungen, moduliert durch 
eine stehende Querwelle, zeigen lhnliche Charakteristika und machen deutlich, da13 die beiden StGrungs- 
erscheinungen miteinander verbunden sind und such verbunden bleiben bei kleinen Phasendifferenzen. 
Experimentell bestimmte iibergangsbedingungen korrespondieren somit sehr eng mit StrGmungen, in 

denen sich nach dieser Analyse grol3e Wirbelbewegungen finden. 

BTOPMYHbIE OCPEAHEHHbIE TEYEHMR, B03HMKAKXqME B CBOSOAHO- 
KOHBEKTMBHOM IIOTOKE 

hllOTBlJHR- npenCTaBneHb1 pe3yJTbTaTbt 'iHCJIeHHOr0 paCYeTa pa3BkiTkiR M HefltfHekHOrO B3aHMO- 

AeiicTBaH AB~X B03MyueHHti, npocTpaHcTseHHor0 II nonepeqsoro, a CB~~~AH~-K~HB~KTP~BH~M 

IIOrpaH&iYHOM CJlOe Ha BepTHKanbHOi? WlOCKOii WIaCTEiHe. HakneHO, YTO B03MyULeHHII KOHeYHOfi 

aMNIATyAb1 npHBOLVlT K 06pa3oBaHufo LIBOiiHOti CkiCTeMbI npOnOnbHblX OCpeAHeHHbIX BTOptiYHblX 

BHxpek. llpa onpeneneHHor4 HanpaeneHHu noroKa Bnonb n.nacTHHbl N 0rAenbHbIx @asax ~cI~~BHoB 

BonHbI 3Ta npononbHaa qaplcynsuHn i3bl3bmaeT nonepeMeHHoe ysenwiease anu yMeHbtueHkie 

TonrmiHbI norpaHkiuHoP o6nacra, B pe3ynbTaTe vero nponcxonkiT u3MeHeHse KpyTx43HbI npo&ins 

CKOpOCTH OCHOBHOrO IIOTOKa. AHanOrllYHble XapaKTeptiCTHKIi IIpOfiBJISIfOTC~ TaKXCe I4 IlpH Onpene- 

J‘eHHH peaKUkW IIOTOKa Ha pery,WpyeMbIe AByMepHbIe B03MyLL,eHWI IlO nOTOry, Bb13BaHHbIe none- 

peYHO& CTOSlYe8 BOJIHOfi. M AeiiCTBkiTenbHO, o6e XapaKTepHCTHKH BO3MyllJeH&Wl TeCHO CB113aHbI 

MeXWy co602t rIpH He6onbmoti pa3HOCTA @as. TaKRM o6pa3oM. 3KCI’IepHMeHTaJIbHO HafineHHble 

yCJIOB&Wl IIepeXOna COOTBeTCTByKJT yCJIOBHSIM HHTeHCHBHOrO BHXpeBOrO nBWKeHHII, 06HapyHteHHoro 

c noMowbm 3Toro aHanA3a. 


